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The stability of stratified shear flows 

By M. R. COLLYER 
Department of Mathematics, University of Essex, Colchestert 

(Received 6 September 1969) 

Small perturbations of a parallel shear flow U ( z )  in an inviscid, incompressible, 
stably stratified fluid of density p(z) are considered, for which the principal 
measure of stability is the Richardson number, R. For an arbitrary velocity and 
density profile we discuss the problem of determining whether a curve of neutral 
stability has adjacent unstable regions in an (a, R) plane, where a is the wave- 
number of the disturbance. Neutral curves bounding unstable regions are then 
obtained for a triangular jet flow in conjunction with various density distribu- 
tions. A Comparison is also made between the stability characteristics of jet 
and shear flows with corresponding density structures. 

1. Introduction 

pressible, stably stratified fluid of Brunt-Vaisala frequency N ( z )  (where 
The stability of a steady, plane, parallel flow ( U ( z ) ,  0,O) in an inviscid, incom- 

N 2  = -ddP/dZ)/P 

with g gravity and p(z) the density) is dependent on the Richardson number 

It was demonstrated by Miles (1961) that a sufficient condition for stability is 
that R > $ at all levels. If R < t at a certain level then the flow is not necessarily 
unstable, as the stability characteristics are dependent on the particular velocity 
and density profile under consideration. 

If we represent the vertical velocity w1 for any infinitesimal disturbance by 
spatially periodic wave motion so that 

where po is a reference density, a is the wave-number and c = c,+ ic, is the phase 
speed, (with instability occurring if ci > 0), then the stability characteristics 
are determined by the Taylor-Goldstein equation 

The simplest method of establishing these characteristics, for any particular 
flow, is to obtain the neutral eigensolutions (ci = 0) of (1.3) satisfying required 

t Present address : Royal Aircraft Establishment, Farnborough, Hants. 



368 M .  R. Collyer 

boundary conditions. It may then be possible to construct a stability boundary 
(or neutral curve) which is a loms of neutral eigenvalues for which there exist 
contiguous eigenvalues with ci > 0 in an (a, R) plane. Indeed, neutral curves 
have been determined for many special velocity and density distributions (see 
Drazin & Howard 1966), although these have been primarily for examples with 
monotonic velocity profiles rather than the jet type. 

The lack of neutral curves associated with jet flows is only partly due to the 
difficulty of obtaining neutral eigensolutions to (1.3) for any specified profile, 
because even if a neutral eigensolution can be found it still has to be resolved 
whether or not it forms part of a stability boundary. The former problem may 
be overcome by approximating to the velocity and density distribution with a 
layered model, in each layer of which both N and d Uldz are treated as constants. 
This approach has been adopted only for monotonic velocity distributions, with 
Miles & Howard (1  964) using a three-layer model which is effectively an approxi- 
mation to U = tanhz. The resulting neutral curve bears a close resemblance to 
that obtained by Drazin (1958) with the tanhz profile. Therefore, as it has not 
been possible to construct any neutral curve associated with U = sechz, we 
examine the stability of a jet flow by considering a four-layer model in which the 
velocity distribution is defined by a triangular jet profile. However, before we 
proceed to study this example it is necessary to clarify the other problem of 
determining whether a neutral eigensolution has contiguous unstable modes in 
an (a, R) plane. 

2. The neutral curve 

conditions 

then the resulting eigenvalue equation may be placed in the form 

If there exists a solution to the stability equation (1.3) satisfying the boundary 

(2.1) w = 0 at  z = zl, z2, 

f(a, R, c) = 0, (2.2) 

and (2.2) possesses the property that it is invariant under complex conjugation. 
Thus there is stability when c is real and instability for c complex, so that we may 
represent the solution to the eigenvalue equation as occurring in either one of 
the two possible states: (I) the (a,R) plane is divided into separate regions in 
which ci = 0 or ct + 0; or (11) ci = 0 for all values of a, R. 

If ci = 0 there exists a ‘critical level’ z,in the interval (zl, z2)  at which U(zJ  = c, 
and any neutral eigensolution of (1.3) has a branch point at  this level. Hence the 
solution is multi-valued over part of the range. Miles (1961) has discussed this 
difficulty and suggested that by including viscosity v and heat conductivity K ,  
and then determining the asymptotic solution as these parameters tend to zero, 
(or by defining an initial value problem and then determining its asymptotic 
solution as t-+oo), that the inviscid solution is the limit of the solution ci -+ 0 + . 
The neutral eigensolutions are then defined through this limiting process, and 
are taken to be single-valued over the entire range of z. 

However, this limiting process which Miles defines yields information about 



T h e  stability of strati$ed shear flows 369 

any neutral eigensolution. But we are principally interested in those neutral 
eigensolutions which are contiguous to inviscid eigensolutions with ci > 0, i.e. 
the case for which K ,  v = 0 and ci + 0 from a region in the (a, R) plane in which 
ci =k 0. It is through this limiting process that a neutral curve (in the sense of $1)  
is defined, and to obtain that curve we must consider the limits K ,  v -+ 0, ci -+ 0 
in that order. We therefore adopt this approach which implies that in general the 
inviscid neutral eigensolutions are indeterminate. This indeterminancy may be 
removed, as Miles showed, by defining a limiting process cg -+ 0, K ,  v -+ 0 in that 
order, but this defines all the neutral eigensolutions whereas the other defines 
only those which are contiguous to unstable modes in an (a,  R) plane. 

The analysis of Miles (1961) also showed, with the boundary conditions (2.1)) 
that a necessary condition for any inviscid neutral motion is Q = 0, where 

Q = (r 2) dz 

is the rate at  which mean wave energy is transferred from the mean flow to the 
perturba,tion flow by the Reynolds stress 

r = -p- 1, (2.4) 
and where (ul, 0, wl) is the perturbation velocity field with a bar denoting a mean 
with respect to x. Although Q = 0 for all ci = 0, due to the limiting process defined 
above Q is in general multi-valued and is determinate only in the limit c,+O. 
Hence we have a pair of equations resulting from the eigenvalue problem and 
the energy condition given by 

which, if we treat c as a parameter, yields two possible situations: (i) we obtain 
a curve g(a, R) = 0 in the (a, R) plane, which forms a boundary to regions in 
which ci > 0; or (ii) there exists no solution to (2.5) and hence no neutral curve. 

Therefore any curve in the (a, R) plane determined by a solution to (2.5) is 
necessarily a neutral curve, since it is contiguous to eigenvalues with ci > 0. 
However we have not proved that this is the entire neutral curve, and also if 
case (ii) applies the flow is stable for all R. For example, suppose we have a flow 
such that there exists a region in the (a, R )  plane with ci = const. ( f 0)) then 
(2.5) does not yield the neutral curve bounding this region. Thus to complete 
the proof that (2.5) is sufficient to determine the entire neutral curve, (i.e. there 
is a one-one mapping from the set (i, ii) to (I, 11)), it is necessary to demonstrate, 
by considering the neutral eigensolution defined in the limit ci -+ 0 + , K ,  v --f 0 
and if ci =l= 0 the eigensolution with ci > 0, that c is a continuous function of CL 
for fixed R. 

This result has been proved by Miles (1963) if N and U are analytic functions, 
and it can easily be shown to be true for a model in which N and U are piecewise 
continuous functions. However Miles (1963) was able to utilize this result only 
for the case of monotonic velocity profiles, whereas with our approach we may 
conclude with the aid of this result that (2.5) determines the entire neutral curve 
for any arbitrary velocity and density profile. 
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3. Formulation of the jet stability problem 
If we choose a Cartesian (x ,z)  co-ordinate system, so that the velocity U at 

z = f. 00 is zero, then we may represent the velocity field for a triangular jet 
profile as 

where the depth of a shear layer and maximum velocity of the jet have been 
chosen as the respective units of length and velocity. We define the Brunt- 
V aisala frequencyN by 

J- ( z  < O),  

with Ji and J- constant, so that the Richardson number is given by Ji and J- 
in the upper and lower shear layers respectively, while it is zero in the outer layers. 

The solution to (1.3) for the distribution of U and N specified by (3.1) and (3.2) 
is given by 

(3.3) 

(3.4a, b )  

(3.5a, b )  

while if& > t then we replace vf by ip*. We have determined the solution (3.3) 
subject to the boundary conditions a t  z = & m and A+ (which must necessarily 
be real in order to satisfy these conditions) is given by 

I 
where 

lv is a modified Bessel function, and v* is defined by 

z* = (1 -c) Tz,  

vrt = (4- J&)4 

1 
A* = - [(.c)~- J+]i. (3.6a, b )  

At an interface between layers the boundary conditions require that the dis- 
placement and pressure are continuous. Consequently 

C 

(i) w is continuous (3.7) 

and w is continuous 
.. dw auld2 

(11) -- - 
dz ( U - c )  

at an interface. By applying (3.7) and (3.8) at z = k 1 we obtain, after some 
straightforward algebraic calculations, 

A*$$’( -T)+B*$p( - T )  = 0, (3.9a, b )  

4 W )  = [i - (r2 - J*)+14 ( r )  - T I ; ,  (TI, (3.20a, b )  

$ $ ) ( T )  = [; - ( + - J * ) B ]  I-,, (?.)--I’ J T ) )  (3.11 a, b )  

and r = ac. (3.12) 

where 
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At z = 0 the boundary conditions yield 

A+Ivt(a) +B+.LVt(s) - - - ~ J , - ( s ) - B - L - ( s )  = 0, (3.13) 

and A+G,+(s) +B+G-,+(s) +A-G,-(~)+B-G-,-(s)  = 0, (3.14) 

where s = a(1 - c ) ,  (3.15) 

and the function C, is defined as 

= &(s) - &@). (3.16) 

In the above set of equations the dashes refer to derivatives with respect to 
the variable in the argument of the Bessel function, i.e. 

a 
(3.17) I:(4 = ~ { W ) I .  

Value of a.r/p, Range of z 

The other equation which is needed to construct the neutral curve is the 
energy condition Q = 0,  which from (2.3) is 

(Tg) ax = 0, (3.18) 

with the Reynolds stress r determined in the limit c4 + 0 + . For the case of 
neutral motion, from Miles (1961), r is given by 

(3.19) 

where the asterisk denotes a complex conjugate. If ci = 0 then 8* changes sign 
at  the critical levels zc, where z, = (1  -c) .  In the upper shear layer, for 
0 < x < z,, 8, > 0 and thus I-kv+(8+) is real and positive. But 8, < 0 for 

(3.20) 
z, < z < 1, so that I,( - Z+) = e+rI,(Z+), 

where 8, = -z+. A choice of sign exists in (3.20) and as discussed in $2 this 
can be resolved only in the limit c4 -+ 0. Since 4(2+) < 0 for ci > 0 we accordingly 
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restrict Z* to the lower half of the complex plane, which implies that in the limit 
ci -+ O +  we must choose the negative sign of the exponent in (3.20). With this 
restriction, and a similar one for the lower shear layer, w is a well-defined single- 
valued function. This enables w* and dw/dz to be calculated from (3.3) and 
substituted into (3.19)) and through (3.9u, b )  we may express r in terms of a 
single arbitrary constant. The results of these straightforward algebraic calcula- 
tions for the various cases are summarized in table 1. 

From table 1 it can be seen that T is constant, and irrespective of the value of 
J it is non-zero only in the interval ( - z,, z,.). Since d U / d z  = 0 for IzI > 1 ,  (3.18) 

(3.21) 
simplifies to 

7+-r7_ = 0, 

where the values of r+ and r- are given in table 1. In  one special case, when 
J+ = J- = J (  < i), (3.21) is greatly simplified so that the neutral curve can easily 
be constructed. We shall examine this example in detail in the next section, 
and it provides a basis for a discussion of the more complicated situation in which 
J+ > $and J- < 2. 

4. J+ = J- = J (  < 3)  
In  this section we examine an atmosphere of constant Brunt-VaisalB frequency. 

Because of the symmetry one of the equations, (3.21), which determines the 
neutral curve has only the trivial solution A ,  = A- = 0 or &? = = 0, which 
implies through ( 3 . 9 ~ ~ )  b )  that B, = B- = 0. (Thus r = 0 for all z, i.e. there is 
no exchange of mean wave energy between the mean flow and the perturbation 
flow at  any level.) 

If we consider the eigenvalue problem in the limit ci -+ 0 + and put B+ = B- = 0 
then ( 3 . 9 ~ )  and (3.9b) degenerate into a single equation: 

[+ - (r2 - J)*] .&(r) - T ~ ; ( Y )  = 0, 

+I$) - S q s )  = 0. 

(4.1) 

(4.2) 

while (3.13) reduces to an identity and (3.14) becomes G,(s) = 0, i.e. 

Thus the neutral curve is determined by the solutions to the pair of equations 
(4.1) and (4.2) with a and c given by 

r > Ja, s > 0, 
a = Y+S 

c = r / ( r  + s) (4.3) 

where use has been made of (3.12) and (3.15). 
Miles & Howard (1964) have discussed an equation of similar type to (4.1) 

and from their analysis we may deduce that (4.1) and (4.2) each have one and 
only one solution for fixed v in the interval ( - $, +). Therefore there exists only 
one value of a corresponding to a point on the neutral curve in the (a, J )  plane 
€or each v. A programme was written to evaluate these solutions for particular 
values of v, and the resulting values of a and c are used to plot a neutral curve 
in the (a, J )  plane, which is shown in figure 1. At J = 4 only a disturbance with 
a wave-number of 1.663 and a wave speed of 0.360 is ‘critically’ stable in that 
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it is contiguous to unstable modes. But as J decreases so the waveband of 
unstable wavelengths increases, until at J = 0 all wave-numbers such that 
0 < a < 1.838 are unstable for certain wave speeds. The homogeneous problem 
(J  = 0 )  has been investigated by Rayleigh (1880) and the range of unstable 
wavelengths is in agreement with his results. 

I 
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1. The neutral curve for jet flow with N constant throughout the atmosphere. 
Numbers in brackets denote the wave speed. 
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1. The neutral curve for jet flow with N constant throughout the atmosphere. 
Numbers in brackets denote the wave speed. 
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FIGURE 2. The neutral curve for jot  flow with N zero in the outer layers. Numbers in 
brackets denote the wave speed. 
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To complete this section we consider a model with constant density ( N  = 0 
in the outer layers, since in these circumstances the boundary conditions a t  
z = +. co imply no restrictions on the small wave-numbers as acceptable modes. 
The only effect this has on the earlier analysis is to alter (4. l), (which is dependent 
on the conditions in the outer layers), to 

(* - r )  IJr) - T I ; ( ? , )  = 0. (4-4) 

Thus (4.4) and (4.2) are the pair of equations for a and c which determine the 
neutral curve. (a and c are defined as in (4.3) but with r > 0.) These equations 
differ only slightly from the previous pair, so that by following a similar pro- 
cedure as before we obtain the neutral curve which is plotted in figure 2. 

For J = 0 we know that the unstable waveband remains unaltered, but the 
shape of the entire neutral curve is very similar to figure 1 with the critical 
wave-number at J = 4 only slightly reduced to 1.481 for a wave speed of 0.280. 
The main difference between the examples is that in the former one the wave 
speed is nearly constant at  all points along the neutral curve, while for the latter 
it varies with a and J .  

5. The stability of an isolated shear layer 
We digress in this section from the main problem to examine the stability 

of a shear layer embedded between layers of constant velocity, which was 
originally studied by Goldstein (1931) and subsequently by Miles & Howard 
(1964). In  order to facilitate a comparison with the jet profile the velocity field 
is defined as 

(5.1) i I 0 (2 < - l), 

1 (2 > 01, 

u =  l + z  ( - l < z < O ) ,  

while the Brunt-VaisaIa frequency is defined by (3.2). 
The solution to the stability equation (1.3) in the interval ( - 1,0) is thus 

unaltered from the jet case, and through a result of Miles (1961) we can establish 
that the energy condition Q = 0 restricts this solution so that either A- = 0 
or B- = 0. With this restraint the equation resulting from the application of 
the boundary conditions at z = - 1 is 

[$ - (r2 - J-)h] IV-(r) - TI:-(?,) = 0. 

[$ - (s’ - J+)*] I”-(s) - ~1;- (s) = 0, 

(5.2) 

(5.3) 

From the symmetry of the situation the boundary conditions at z = 0 yield 

which with (5 .2 )  determines the entire neutral curve if 

r > J k ,  s > J$ .  
a = r+s  

c = r / ( r  + s )  
(5.4) 

For an atmosphere in which J+ = J- = J the pair of equations (5.2) and (5.3) 
are identical, so that r = s, i.e. c = 4 at all points of the neutral curve. As this 
equation is also identical to (4.1) there is a simple connexion between the neutral 
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curves for the two velocity profiles. It can be stated as: In  an atmosphere of 
constant Brunt-Vaisiila frequency the neutral curves for the jet profile (3.1) 
and the shear profile (5.1) are linked by the relationship 

ujc j  = *a, (5.5) 

for any fixed value of v, where the subscriptsj and s refer to the jet and shear 
flow values respectively. 

With the aid of (5.5) we may deduce from figure 1 the neutral curve for shear 
flow in an atmosphere of constant Brunt-Vaisala frequency. The resulting curve 
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FIGURE 3. Neutral curves for shear flow. -, N constant throughout atmosphere; 
- - - -, N zero in outer layers (from Miles & Howard 1964). 

U 

FIGURE 4. Neutral curves for shear flow in an (a, J - )  plane for three values of J ,  : 4, 1 and 4. 
Numbers in brackets denote the wave speed. 
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is sketched in figure 3, together with Miles & Howard’s neutral curve for the 
case where N = 0 in the outer layers. By a similar argument to the one above 
this could have been determined from the curve shown in figure 2. 

Finally, we revert to the problem posed by (5.2) and (5.3) and examine the 
effect on the stability of different values of N in the uppermost layer. The re- 
striction that s > J$. prevents the small wave-numbers from being acceptable 
modes. However as J+ increases so the solution to (5.3) tends rapidly towards 
J+; for example (s- J t )  < when J+ = 4. Hence the shape of the neutral 
curve in an (a, J-) plane is determined effectively by the solutions to (5.2) and 
the absolute value by the stability parameter N in the uppermost layer. This 
is demonstrated in figure 4 by neutral curves for various values of J+. 

6. J+ > B and J- < f 
We return t o  the problem proposed at the end of 93 on the stability of a jet 

stream in an atmosphere for which J+ > f and J- < 4. In the symmetrical case, 
discussed in $4, r and s could be determined separately whereas for this case 
they are interlinked so that the position is extremely complicated. Therefore 
it will be more profitable to discuss the implications of the energy condition 
(3.21) alone, and from this derive a few general results. 

$?(r) 

i- $f’(r) 

From table 1 the energy condition is given by 

lA lz(ell+n-ee-rt.)(e4a+n- 1) = -4lA-/z---- sin Y- r sin 2v-n. (6.1) 

Since ,u+ > 0, the left-hand side of (6.1) is always positive, so that a solution to 
(6.1) exists only if 

This result implies that both 7+ > 0 and 7- > 0 for neutrally stable waves which 
are contiguous to unstable waves in an (a, R) plane. Hence this is an example 
of a situation where mean wave energy can be transferred between the mean flow 
and the perturbation flow. It always takes place in such a way that in the lower 
shear layer, where J- < f, the transfer is from the mean flow to the perturbation 
flow, while in the upper shear layer it is in the reverse direction. However 7- + 0 
as J- -+ 4, i.e. the amount of energy transferred tends to zero. 

In  order to examine condition (6.2) we first note that under a transformation 
v- -+ - v-, $9) -+ q5!? and #?) + #!?, so that it is sufficient to consider Y- in the 
interval (0,;). We also need to refer to certain results used in $4. In particular, 
as the equation #‘?(r) = 0 is identical in form to (4.1) we can show that it has 
one and only one solution for fixed Y-, say at  r = rl. Similary $‘?(r) = 0 has only 
one solution, at r = r2 say. Thus from (3.10b) and (3.116) we have that 
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and similarly 

Furthermore, for fixed values of v-, both $?(r) and $r")(r) are monotonic de- 
creasing functions of r .  Therefore with the aid of (6.3) and (6.4) we can prove 
that r2 > r l ,  and there exists only a finite interval ( r l ,  r 2 )  in which qS!)/$f) is 
negative and condition (6.2) is satisfied. 

Thus (6.2) is a necessary (but not sufficient) condition for instability, and is 
independent of the value of J+. We can therefore deduce if J+ > rg that the flow 
is stable, since the boundary condition at  z = + 00 is satisfied onlyif r > Jt. 
From our analysis in $ 4  we may obtain the value of r2  for any particular value 
of J-; for example, if J- = 0.15 then r2 = 0.655 and the flow is stable if J+ > 0.429. 
The possibility that no unstable waves develop for certain values of N in the 
uppermost layer appears to be the principal distinction between the shear flow 
and jet flow oases. 

In  conclusion, it is evident for any combination of velocity and density profiles 
studied that the flow is unstable if R < at any level, unless the unstable 
wavelengths cannot be excited due to restrictions imposed by the boundary 
conditions. 
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